论文标题

2-convex的凸度,将孤子转换为$ \ mathbb {r}^{n+1} $中的平均曲率流量

Convexity of 2-convex translating and expanding solitons to the mean curvature flow in $\mathbb{R}^{n+1}$

论文作者

Xie, Junming, Yu, Jiangtao

论文摘要

在本文中,受Spruck-Xiao [27]的工作的启发,部分是基于Derdziński[11]的结果,我们证明了完整的2-Convex翻译和扩展孤子曲线到平均值曲率流到$ \ Mathbb {r}^r}^{N n+1} $中的均值。更确切地说,对于$ n \ geq 3 $,我们表明任何$ n $二维完整的2-convex翻译孤子是凸的,任何$ n $ diper-n $二维的完整2-Convex自称为(严格)平均凸锥均为偶音。

In this paper, inspired by the work of Spruck-Xiao [27] and based partly on a result of Derdziński [11], we prove the convexity of complete 2-convex translating and expanding solitons to the mean curvature flow in $\mathbb{R}^{n+1}$. More precisely, for $n\geq 3$, we show that any $n$-dimensional complete 2-convex translating solitons are convex, and any $n$-dimensional complete 2-convex self-expanders asymptotic to (strictly) mean convex cones are convex.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源