论文标题

RBA:分割所有人拒绝的未知区域

RbA: Segmenting Unknown Regions Rejected by All

论文作者

Nayal, Nazir, Yavuz, Mısra, Henriques, João F., Güney, Fatma

论文摘要

标准语义分割模型的成功归功于具有固定语义类别的策划数据集,而无需考虑从新颖类别中识别未知对象的可能性。由于人均分类范式的局限性,异常检测中的现有方法的预测缺乏平稳性和对象。此外,检测异常值的其他培训会损害已知类别的表现。在本文中,我们探索了另一个具有区域级分类的范式,以更好地段未知对象。我们表明,掩码分类中的对象查询往往表现得像一个\ vs所有分类器一样。基于这一发现,我们提出了一种新颖的离群评分函数,称为RBA,通过将异常值定义为被所有已知类别拒绝的事件。我们的广泛实验表明,掩模分类改善了现有的异常检测方法的性能,并通过拟议的RBA实现了最佳结果。我们还提出了一个目标,以使用最小的离群监督优化RBA。与异常值进行进一步的微调可以改善未知的性能,与以前的方法不同,它不会降低较高的性能。

Standard semantic segmentation models owe their success to curated datasets with a fixed set of semantic categories, without contemplating the possibility of identifying unknown objects from novel categories. Existing methods in outlier detection suffer from a lack of smoothness and objectness in their predictions, due to limitations of the per-pixel classification paradigm. Furthermore, additional training for detecting outliers harms the performance of known classes. In this paper, we explore another paradigm with region-level classification to better segment unknown objects. We show that the object queries in mask classification tend to behave like one \vs all classifiers. Based on this finding, we propose a novel outlier scoring function called RbA by defining the event of being an outlier as being rejected by all known classes. Our extensive experiments show that mask classification improves the performance of the existing outlier detection methods, and the best results are achieved with the proposed RbA. We also propose an objective to optimize RbA using minimal outlier supervision. Further fine-tuning with outliers improves the unknown performance, and unlike previous methods, it does not degrade the inlier performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源