论文标题

用麻雀进行高通量计算活动的超快速半经验量子化学

Ultra-Fast Semi-Empirical Quantum Chemistry for High-Throughput Computational Campaigns with Sparrow

论文作者

Bosia, Francesco, Zheng, Peikun, Vaucher, Alain, Weymuth, Thomas, Dral, Pavlo O., Reiher, Markus

论文摘要

已知半经验量子化学方法可损害准确性,以便对巨大分子的计算可行性。但是,在交互式量子机械研究,高通量虚拟筛选以及数据驱动的机器学习中需要超快计算的需求已将重点转移到最近计算运行时。这是针对软件实施的新限制,因为在研究单个分子结构时,许多快速计算都会遭受大量的手动设置和其他程序的范围相对较快的,但是对于高通量需求而言,它们会非常慢。在这项工作中,我们讨论了各种良好的半经验近似值对计算速度的影响,并将其与从RAW-DATA源计算机的数据传输速率与结果可视化前端相关联。对于前者,我们考虑台式计算机,本地高性能计算以及远程云服务,以阐明对交互式计算的效果,本地应用程序中的Web和云接口以及在全球交互式虚拟会话中的影响。这项工作中讨论的模型已在我们的开源软件Scine Sparrow中实现。

Semi-empirical quantum chemical approaches are known to compromise accuracy for feasibility of calculations on huge molecules. However, the need for ultrafast calculations in interactive quantum mechanical studies, high-throughput virtual screening, and for data-driven machine learning has shifted the emphasis towards calculation runtimes recently. This comes with new constraints for the software implementation as many fast calculations would suffer from a large overhead of manual setup and other procedures that are comparatively fast when studying a single molecular structure, but which become prohibitively slow for high-throughput demands. In this work, we discuss the effect of various well-established semi-empirical approximations on calculation speed and relate this to data transfer rates from the raw-data source computer to the results visualization front end. For the former, we consider desktop computers, local high performance computing, as well as remote cloud services in order to elucidate the effect on interactive calculations, for web and cloud interfaces in local applications, and in world-wide interactive virtual sessions. The models discussed in this work have been implemented into our open-source software SCINE Sparrow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源