论文标题
针对任务的对话框注入词典的语义解析
Lexicon-injected Semantic Parsing for Task-Oriented Dialog
论文作者
论文摘要
最近,使用分层表示对话框系统的语义解析引起了极大的关注。已经提出了以任务为导向的解析(TOP),这是一种带有意图和插槽作为嵌套树节点标签的树表示,已提议用于解析用户话语。以前的顶级解析方法仅限于解决看不见的动态插槽值(例如,添加的新歌和位置),这是真实对话系统的紧迫问题。为了减轻此问题,我们首先为基于跨度的解析器提出了一种胜过现有方法的新型跨度分解表示。然后,我们提出了一种新颖的词典注射语义解析器,该解析器将树表示的插槽标签收集为词典,并将词汇特征注入Parser的跨度表示。还涉及另一种插槽歧义技术,以消除词典的不适当跨度匹配。我们最好的解析器在顶部数据集中产生了新的最先进的结果(87.62%),并在不需要重新培训的情况下,展示了其适应性的经常更新的插槽词典条目,而无需重新培训。
Recently, semantic parsing using hierarchical representations for dialog systems has captured substantial attention. Task-Oriented Parse (TOP), a tree representation with intents and slots as labels of nested tree nodes, has been proposed for parsing user utterances. Previous TOP parsing methods are limited on tackling unseen dynamic slot values (e.g., new songs and locations added), which is an urgent matter for real dialog systems. To mitigate this issue, we first propose a novel span-splitting representation for span-based parser that outperforms existing methods. Then we present a novel lexicon-injected semantic parser, which collects slot labels of tree representation as a lexicon, and injects lexical features to the span representation of parser. An additional slot disambiguation technique is involved to remove inappropriate span match occurrences from the lexicon. Our best parser produces a new state-of-the-art result (87.62%) on the TOP dataset, and demonstrates its adaptability to frequently updated slot lexicon entries in real task-oriented dialog, with no need of retraining.