论文标题

当频谱建模符合卷积网络时:一种在多波段成像数据中发现Reionization-revion-evion-evion-evion-evion-evienization-evienter网络的方法时

When Spectral Modeling Meets Convolutional Networks: A Method for Discovering Reionization-era Lensed Quasars in Multi-band Imaging Data

论文作者

Andika, Irham Taufik, Jahnke, Knud, van der Wel, Arjen, Bañados, Eduardo, Bosman, Sarah E. I., Davies, Frederick B., Eilers, Anna-Christina, Jaelani, Anton Timur, Mazzucchelli, Chiara, Onoue, Masafusa, Schindler, Jan-Torge

论文摘要

在过去的二十年中,在$ z \ gtrsim6 $中发现了大约300种类星体,但只有一个被确定为强烈的重力。我们探索了一种新方法 - 扩大允许的光谱参数空间,同时引入新的空间几何否决标准 - 通过基于图像的深度学习实现。我们首先将这种方法应用于系统搜索,以使用黑暗能源调查中的数据,可见的和红外调查望远镜进行天文学调查的望远镜以及范围的红外调查探索者。利用卷积神经网络(CNN)分类,候选者的计算是镜头或某些污染物。训练数据集是通过在实际星系图像上绘制偏转的点源灯来构建的,以生成逼真的Galaxy-Quasar镜头型号,该模型已优化,以找到具有较小图像分离的系统,即$θ_\ Mathrm的Einstein Radii,Mathrm {E}} \ Leq 1 $ arcsec。然后,对CNN分数为$ P_ \ Mathrm {Lens}> 0.1 $的CNN分数进行视觉检查,这使我们获得了36个新选择的镜头候选者,这正在等待光谱确认。这些发现表明,在适度的人类输入的支持下,自动化的SED建模和深度学习管道是检测大型目录的强镜头的有前途的途径,这些途径可以克服主要基于辍学的SED选择方法的否决限制。

Over the last two decades, around 300 quasars have been discovered at $z\gtrsim6$, yet only one has identified as being strongly gravitationally lensed. We explore a new approach -- enlarging the permitted spectral parameter space, while introducing a new spatial geometry veto criterion -- which is implemented via image-based deep learning. We first apply this approach to a systematic search for reionization-era lensed quasars, using data from the Dark Energy Survey, the Visible and Infrared Survey Telescope for Astronomy Hemisphere Survey, and the Wide-field Infrared Survey Explorer.Our search method consists of two main parts: (i) the preselection of the candidates based on their spectral energy distributions (SEDs) using catalog-level photometry and (ii) relative probabilities calculation of the candidates being a lens or some contaminant, utilizing a convolutional neural network (CNN) classification. The training data sets are constructed by painting deflected point-source lights over actual galaxy images, to generate realistic galaxy-quasar lens models, optimized to find systems with small image separations, i.e., Einstein radii of $θ_\mathrm{E} \leq 1$ arcsec. Visual inspection is then performed for sources with CNN scores of $P_\mathrm{lens} > 0.1$, which leads us to obtain 36 newly selected lens candidates, which are awaiting spectroscopic confirmation. These findings show that automated SED modeling and deep learning pipelines, supported by modest human input, are a promising route for detecting strong lenses from large catalogs that can overcome the veto limitations of primarily dropout-based SED selection approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源