论文标题
Dynagan:动态的几射门适应到多个域
DynaGAN: Dynamic Few-shot Adaptation of GANs to Multiple Domains
论文作者
论文摘要
对多个域的适应范围很少,旨在从一些训练图像中学习跨多个域的复杂图像分布。这里的幼稚解决方案是使用少量射击域的适应方法训练每个域的单独模型。不幸的是,这种方法要求在内存和计算时间内线性缩放的计算资源,更重要的是,这种单独的模型无法利用目标域之间的共享知识。在本文中,我们提出了Dynagan,这是一种用于多个目标域的新型射击域 - 适应方法。 Dynagan具有一个适应模块,它是一种超网络,将验证的GAN模型动态化为多个目标域。因此,我们可以完全利用跨目标域的共享知识,并避免线性缩放的计算要求。由于适应大型GAN模型仍然在计算上具有挑战性,因此我们使用Rank-1张量分解设计适应模块。最后,我们提出了适合多域几次适应的对比度适应损失。我们通过广泛的定性和定量评估来验证方法的有效性。
Few-shot domain adaptation to multiple domains aims to learn a complex image distribution across multiple domains from a few training images. A naïve solution here is to train a separate model for each domain using few-shot domain adaptation methods. Unfortunately, this approach mandates linearly-scaled computational resources both in memory and computation time and, more importantly, such separate models cannot exploit the shared knowledge between target domains. In this paper, we propose DynaGAN, a novel few-shot domain-adaptation method for multiple target domains. DynaGAN has an adaptation module, which is a hyper-network that dynamically adapts a pretrained GAN model into the multiple target domains. Hence, we can fully exploit the shared knowledge across target domains and avoid the linearly-scaled computational requirements. As it is still computationally challenging to adapt a large-size GAN model, we design our adaptation module light-weight using the rank-1 tensor decomposition. Lastly, we propose a contrastive-adaptation loss suitable for multi-domain few-shot adaptation. We validate the effectiveness of our method through extensive qualitative and quantitative evaluations.