论文标题

通过线性化对非线性过程系统的基于试管的分布强大的模型预测控制

Tube-based Distributionally Robust Model Predictive Control for Nonlinear Process Systems via Linearization

论文作者

Zhong, Zhengang, del Rio-Chanona, Ehecatl Antonio, Petsagkourakis, Panagiotis

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Model predictive control (MPC) is an effective approach to control multivariable dynamic systems with constraints. Most real dynamic models are however affected by plant-model mismatch and process uncertainties, which can lead to closed-loop performance deterioration and constraint violations. Methods such as stochastic MPC (SMPC) have been proposed to alleviate these problems; however, the resulting closed-loop state trajectory might still significantly violate the prescribed constraints if the real system deviates from the assumed disturbance distributions made during the controller design. In this work we propose a novel data-driven distributionally robust MPC scheme for nonlinear systems. Unlike SMPC, which requires the exact knowledge of the disturbance distribution, our scheme decides the control action with respect to the worst distribution from a distribution ambiguity set. This ambiguity set is defined as a Wasserstein ball centered at the empirical distribution. Due to the potential model errors that cause off-sets, the scheme is also extended by leveraging an offset-free method. The favorable results of this control scheme are demonstrated and empirically verified with a nonlinear mass spring system and a nonlinear CSTR case study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源