论文标题

部分可观测时空混沌系统的无模型预测

Deep Fake Detection, Deterrence and Response: Challenges and Opportunities

论文作者

Azmoodeh, Amin, Dehghantanha, Ali

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

According to the 2020 cyber threat defence report, 78% of Canadian organizations experienced at least one successful cyberattack in 2020. The consequences of such attacks vary from privacy compromises to immersing damage costs for individuals, companies, and countries. Specialists predict that the global loss from cybercrime will reach 10.5 trillion US dollars annually by 2025. Given such alarming statistics, the need to prevent and predict cyberattacks is as high as ever. Our increasing reliance on Machine Learning(ML)-based systems raises serious concerns about the security and safety of these systems. Especially the emergence of powerful ML techniques to generate fake visual, textual, or audio content with a high potential to deceive humans raised serious ethical concerns. These artificially crafted deceiving videos, images, audio, or texts are known as Deepfakes garnered attention for their potential use in creating fake news, hoaxes, revenge porn, and financial fraud. Diversity and the widespread of deepfakes made their timely detection a significant challenge. In this paper, we first offer background information and a review of previous works on the detection and deterrence of deepfakes. Afterward, we offer a solution that is capable of 1) making our AI systems robust against deepfakes during development and deployment phases; 2) detecting video, image, audio, and textual deepfakes; 3) identifying deepfakes that bypass detection (deepfake hunting); 4) leveraging available intelligence for timely identification of deepfake campaigns launched by state-sponsored hacking teams; 5) conducting in-depth forensic analysis of identified deepfake payloads. Our solution would address important elements of the Canada National Cyber Security Action Plan(2019-2024) in increasing the trustworthiness of our critical services.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源