论文标题

部分可观测时空混沌系统的无模型预测

Differentiable Meta Multigraph Search with Partial Message Propagation on Heterogeneous Information Networks

论文作者

Li, Chao, Xu, Hao, He, Kun

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Heterogeneous information networks (HINs) are widely employed for describing real-world data with intricate entities and relationships. To automatically utilize their semantic information, graph neural architecture search has recently been developed on various tasks of HINs. Existing works, on the other hand, show weaknesses in instability and inflexibility. To address these issues, we propose a novel method called Partial Message Meta Multigraph search (PMMM) to automatically optimize the neural architecture design on HINs. Specifically, to learn how graph neural networks (GNNs) propagate messages along various types of edges, PMMM adopts an efficient differentiable framework to search for a meaningful meta multigraph, which can capture more flexible and complex semantic relations than a meta graph. The differentiable search typically suffers from performance instability, so we further propose a stable algorithm called partial message search to ensure that the searched meta multigraph consistently surpasses the manually designed meta-structures, i.e., meta-paths. Extensive experiments on six benchmark datasets over two representative tasks, including node classification and recommendation, demonstrate the effectiveness of the proposed method. Our approach outperforms the state-of-the-art heterogeneous GNNs, finds out meaningful meta multigraphs, and is significantly more stable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源