论文标题
部分可观测时空混沌系统的无模型预测
Devils in the Clouds: An Evolutionary Study of Telnet Bot Loaders
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
One of the innovations brought by Mirai and its derived malware is the adoption of self-contained loaders for infecting IoT devices and recruiting them in botnets. Functionally decoupled from other botnet components and not embedded in the payload, loaders cannot be analysed using conventional approaches that rely on honeypots for capturing samples. Different approaches are necessary for studying the loaders evolution and defining a genealogy. To address the insufficient knowledge about loaders' lineage in existing studies, in this paper, we propose a semantic-aware method to measure, categorize, and compare different loader servers, with the goal of highlighting their evolution, independent from the payload evolution. Leveraging behavior-based metrics, we cluster the discovered loaders and define eight families to determine the genealogy and draw a homology map. Our study shows that the source code of Mirai is evolving and spawning new botnets with new capabilities, both on the client side and the server side. In turn, shedding light on the infection loaders can help the cybersecurity community to improve detection and prevention tools.