论文标题

部分可观测时空混沌系统的无模型预测

Traditional Classification Neural Networks are Good Generators: They are Competitive with DDPMs and GANs

论文作者

Wang, Guangrun, Torr, Philip H. S.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Classifiers and generators have long been separated. We break down this separation and showcase that conventional neural network classifiers can generate high-quality images of a large number of categories, being comparable to the state-of-the-art generative models (e.g., DDPMs and GANs). We achieve this by computing the partial derivative of the classification loss function with respect to the input to optimize the input to produce an image. Since it is widely known that directly optimizing the inputs is similar to targeted adversarial attacks incapable of generating human-meaningful images, we propose a mask-based stochastic reconstruction module to make the gradients semantic-aware to synthesize plausible images. We further propose a progressive-resolution technique to guarantee fidelity, which produces photorealistic images. Furthermore, we introduce a distance metric loss and a non-trivial distribution loss to ensure classification neural networks can synthesize diverse and high-fidelity images. Using traditional neural network classifiers, we can generate good-quality images of 256$\times$256 resolution on ImageNet. Intriguingly, our method is also applicable to text-to-image generation by regarding image-text foundation models as generalized classifiers. Proving that classifiers have learned the data distribution and are ready for image generation has far-reaching implications, for classifiers are much easier to train than generative models like DDPMs and GANs. We don't even need to train classification models because tons of public ones are available for download. Also, this holds great potential for the interpretability and robustness of classifiers. Project page is at \url{https://classifier-as-generator.github.io/}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源