论文标题

部分可观测时空混沌系统的无模型预测

Topological superconductivity induced by spin-orbit coupling, perpendicular magnetic field and superlattice potential

论文作者

Schirmer, Jonathan, Jain, J. K., Liu, C. -X.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Topological superconductors support Majorana modes, which are quasiparticles that are their own antiparticles and which obey non-Abelian statistics in which successive exchanges of particles do not always commute. Here we investigate whether a two-dimensional superconductor with ordinary s-wave pairing can be rendered topological by the application of a strong magnetic field. To address this, we obtain the self-consistent solutions to the mean field Bogoliubov-de Gennes equations, which are a large set of nonlinearly coupled equations, for electrons moving on a lattice. We find that the topological "quantum Hall superconductivity" is facilitated by a combination of spin-orbit coupling, which locks an electron's spin to its momentum as it moves through a material, and a coupling to an external periodic potential which gives a dispersion to the Landau levels and also distorts the Abrikosov lattice. We find that, for a range of parameters, the Landau levels broadened by the external periodic potential support topological superconductivity, which is typically accompanied by a lattice of "giant" $h/e$ vortices as opposed to the familiar lattice of $h/2e$ Abrikosov vortices. In the presence of a periodic potential, we find it necessary to use an ansatz for the pairing potential of the form $Δ(\vec{r})e^{i2\vec{Q}\cdot\vec{r}}$ where $Δ(\vec{r})$ has a periodicity commensurate with the periodic potential. However, despite this form of the pairing potential, the current in the ground state is zero. In the region of ordinary superconductivity, we typically find a lattice of dimers of $h/2e$ vortices. Our work suggests a realistic proposal for achieving topological superconductivity, as well as a helical order parameter and unusual Abrikosov lattices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源