论文标题

部分可观测时空混沌系统的无模型预测

Genus bounds for twisted quantum invariants

论文作者

Neumann, Daniel López, van der Veen, Roland

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

By twisted quantum invariants we mean polynomial invariants of knots in the three-sphere endowed with a representation of the fundamental group into the automorphism group of a Hopf algebra $H$. These are obtained by the Reshetikhin-Turaev construction extended to the $\mathrm{Aut}(H)$-twisted Drinfeld double of $H$, provided $H$ is finite dimensional and $\mathbb{N}^m$-graded. We show that the degree of these polynomials is bounded above by $2g(K)\cdot d(H)$ where $g(K)$ is the Seifert genus of a knot $K$ and $d(H)$ is the top degree of the Hopf algebra. When $H$ is an exterior algebra, our theorem recovers Friedl and Kim's genus bounds for twisted Alexander polynomials. When $H$ is the Borel part of restricted quantum $\mathfrak{sl}_2$ at an even root of unity, we show that our invariant is the ADO invariant, therefore giving new genus bounds for these invariants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源