论文标题
部分可观测时空混沌系统的无模型预测
Semi-Supervised Confidence-Level-based Contrastive Discrimination for Class-Imbalanced Semantic Segmentation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
To overcome the data-hungry challenge, we have proposed a semi-supervised contrastive learning framework for the task of class-imbalanced semantic segmentation. First and foremost, to make the model operate in a semi-supervised manner, we proposed the confidence-level-based contrastive learning to achieve instance discrimination in an explicit manner, and make the low-confidence low-quality features align with the high-confidence counterparts. Moreover, to tackle the problem of class imbalance in crack segmentation and road components extraction, we proposed the data imbalance loss to replace the traditional cross entropy loss in pixel-level semantic segmentation. Finally, we have also proposed an effective multi-stage fusion network architecture to improve semantic segmentation performance. Extensive experiments on the real industrial crack segmentation and the road segmentation demonstrate the superior effectiveness of the proposed framework. Our proposed method can provide satisfactory segmentation results with even merely 3.5% labeled data.