论文标题

部分可观测时空混沌系统的无模型预测

Approximate Predictive Control Barrier Functions using Neural Networks: A Computationally Cheap and Permissive Safety Filter

论文作者

Didier, Alexandre, Jacobs, Robin C., Sieber, Jerome, Wabersich, Kim P., Zeilinger, Melanie N.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A predictive control barrier function (PCBF) based safety filter is a modular framework to verify safety of a control input by predicting a future trajectory. The approach relies on the solution of two optimization problems, first computing the minimal state constraint violation given the current state in the form of slacks on the constraint, and then computing the minimal deviation from a proposed input given the previously computed minimal slacks. This paper presents an approximation procedure that uses a neural network to approximate the optimal value function of the first optimization problem, which defines a control barrier function (CBF). By including this explicit approximation in a CBF-based safety filter formulation, the online computation becomes independent of the prediction horizon. It is shown that this approximation guarantees convergence to a neighborhood of the feasible set of the PCBF safety filter problem with zero constraint violation. The convergence result relies on a novel class $\mathcal{K}$ lower bound on the PCBF decrease and depends on the approximation error of the neural network. Lastly, we demonstrate our approach in simulation for an autonomous driving example and show that the proposed approximation leads to a significant decrease in computation time compared to the original approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源