论文标题

部分可观测时空混沌系统的无模型预测

Regression-based heterogeneity analysis to identify overlapping subgroup structure in high-dimensional data

论文作者

Luo, Ziye, Yao, Xinyue, Sun, Yifan, Fan, Xinyan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Heterogeneity is a hallmark of complex diseases. Regression-based heterogeneity analysis, which is directly concerned with outcome-feature relationships, has led to a deeper understanding of disease biology. Such an analysis identifies the underlying subgroup structure and estimates the subgroup-specific regression coefficients. However, most of the existing regression-based heterogeneity analyses can only address disjoint subgroups; that is, each sample is assigned to only one subgroup. In reality, some samples have multiple labels, for example, many genes have several biological functions, and some cells of pure cell types transition into other types over time, which suggest that their outcome-feature relationships (regression coefficients) can be a mixture of relationships in more than one subgroups, and as a result, the disjoint subgrouping results can be unsatisfactory. To this end, we develop a novel approach to regression-based heterogeneity analysis, which takes into account possible overlaps between subgroups and high data dimensions. A subgroup membership vector is introduced for each sample, which is combined with a loss function. Considering the lack of information arising from small sample sizes, an $l_2$ norm penalty is developed for each membership vector to encourage similarity in its elements. A sparse penalization is also applied for regularized estimation and feature selection. Extensive simulations demonstrate its superiority over direct competitors. The analysis of Cancer Cell Line Encyclopedia data and lung cancer data from The Cancer Genome Atlas shows that the proposed approach can identify an overlapping subgroup structure with favorable performance in prediction and stability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源