论文标题
公制学习作为协方差嵌入的服务
Metric Learning as a Service with Covariance Embedding
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
With the emergence of deep learning, metric learning has gained significant popularity in numerous machine learning tasks dealing with complex and large-scale datasets, such as information retrieval, object recognition and recommendation systems. Metric learning aims to maximize and minimize inter- and intra-class similarities. However, existing models mainly rely on distance measures to obtain a separable embedding space and implicitly maximize the intra-class similarity while neglecting the inter-class relationship. We argue that to enable metric learning as a service for high-performance deep learning applications, we should also wisely deal with inter-class relationships to obtain a more advanced and meaningful embedding space representation. In this paper, a novel metric learning is presented as a service methodology that incorporates covariance to signify the direction of the linear relationship between data points in an embedding space. Unlike conventional metric learning, our covariance-embedding-enhanced approach enables metric learning as a service to be more expressive for computing similar or dissimilar measures and can capture positive, negative, or neutral relationships. Extensive experiments conducted using various benchmark datasets, including natural, biomedical, and facial images, demonstrate that the proposed model as a service with covariance-embedding optimizations can obtain higher-quality, more separable, and more expressive embedding representations than existing models.