论文标题

验证语言模型中的科学和创造性类比

Scientific and Creative Analogies in Pretrained Language Models

论文作者

Czinczoll, Tamara, Yannakoudakis, Helen, Mishra, Pushkar, Shutova, Ekaterina

论文摘要

本文研究了大规模预处理的语言模型(例如BERT和GPT-2)中类比的编码。现有的类比数据集通常集中在有限的类似关系上,与类比之间的两个领域相似。作为一个更现实的设置,我们介绍了科学和创造性的类比法数据集(SCAN),这是一个新颖的类比数据集,该数据集包含对跨不同领域的多个属性和关系结构的系统映射。使用此数据集,我们测试了几种广泛使用的审前语言模型(LMS)的类似推理能力。我们发现,最先进的LMS在这些复杂的类比任务上实现了较低的性能,突出了类比理解所带来的挑战。

This paper examines the encoding of analogy in large-scale pretrained language models, such as BERT and GPT-2. Existing analogy datasets typically focus on a limited set of analogical relations, with a high similarity of the two domains between which the analogy holds. As a more realistic setup, we introduce the Scientific and Creative Analogy dataset (SCAN), a novel analogy dataset containing systematic mappings of multiple attributes and relational structures across dissimilar domains. Using this dataset, we test the analogical reasoning capabilities of several widely-used pretrained language models (LMs). We find that state-of-the-art LMs achieve low performance on these complex analogy tasks, highlighting the challenges still posed by analogy understanding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源