论文标题
有限领域及其合理观点的阿贝尔品种
Abelian varieties over finite fields and their groups of rational points
论文作者
论文摘要
我们研究了在有限场$ \ mathbb {f} _q $上定义的亚伯利亚品种的理性点的群体,其内态性环是交换性的,或者等效地,其同等基因由无方形特征的多种元素确定。当$ \ mathrm {end}(a)$是本地Gorenstein时,我们表明$ a(\ Mathbb {f} _Q)$的组结构由$ \ mathrm {endrm {end}(a)$确定。此外,如果$ a $是普通的,或者$ q $是PRIME,我们证明,如果$ \ mathrm {end}(a)$具有本地Cohen-Macaulay类型,则得出相同的结论。 Gorenstein案例中的结果用于表征无方循环的等级基础类别的导体理想。朝着相反的方向发展,我们表征了无方面的阿贝里亚品种的差异等级类别,其中有$ n $合理的观点,其中每个Abelian订单$ n $均被视为一组理性点。最后,我们研究$ \ m athbb {f} _q $及其双重$ a^\ vee $成功或无法满足几个相互关联的属性,即$ a \ cong a^\ Vee $,$ $ \ mathrm {end}(a)= \ mathrm {end}(a^\ vee)$。在此过程中,我们表现出$ a \ not \ cong a^\ vee $涉及$ \ mathrm {endrm {end}(a)$的足够条件。特别是,这样的Abelian品种$ A $不是Jacobian,甚至主要是两极分化的。
We study the groups of rational points of abelian varieties defined over a finite field $ \mathbb{F}_q$ whose endomorphism rings are commutative, or, equivalently, whose isogeny classes are determined by squarefree characteristic polynomials. When $\mathrm{End}(A)$ is locally Gorenstein, we show that the group structure of $A(\mathbb{F}_q)$ is determined by $\mathrm{End}(A)$. Moreover, we prove that the same conclusion is attained if $\mathrm{End}(A)$ has local Cohen-Macaulay type at most $ 2$, under the additional assumption that $A$ is ordinary or $q$ is prime. The result in the Gorenstein case is used to characterize squarefree cyclic isogeny classes in terms of conductor ideals. Going in the opposite direction, we characterize squarefree isogeny classes of abelian varieties with $N$ rational points in which every abelian group of order $N$ is realized as a group of rational points. Finally, we study when an abelian variety $A$ over $\mathbb{F}_q$ and its dual $A^\vee$ succeed or fail to satisfy several interrelated properties, namely $A\cong A^\vee$, $A(\mathbb{F}_q)\cong A^\vee(\mathbb{F}_q)$, and $\mathrm{End}(A)=\mathrm{End}(A^\vee)$. In the process, we exhibit a sufficient condition for $A\not\cong A^\vee$ involving the local Cohen-Macaulay type of $\mathrm{End}(A)$. In particular, such an abelian variety $A$ is not a Jacobian, or even principally polarizable.