论文标题
一种数值方法,用于最佳热对流流量
A numerical approach to the optimal control of thermally convective flows
论文作者
论文摘要
热对流流的最佳控制通常是由由Navier-Stokes方程和对流扩散方程组成的BousSinesQ方程的优化问题建模的。从理论分析和算法设计的角度来看,这个最佳控制问题都是挑战。例如,流体流和能量传输的非线性和耦合阻止了梯度型算法在实践中的直接应用。在本文中,我们提出了一种有效的数值方法,以基于操作员的分裂和优化技术来解决此问题。特别是,我们采用了由$ l^2- $投影利用的Marchuk-Yanenko方法,用于BousSinesQ方程的时间离散化,以便将BousSinesQ方程分解为一些易于的线性方程式,而不会在派生相应的邻接系统中任何困难而没有任何困难。因此,在每次迭代中,需要在每个时间步骤中求解四个简单的线性对流扩散方程和两个退化的Stokes方程,以计算梯度。然后,我们将Bercovier-Pironneau有限元方法应用于空间离散化,并设计BFGS类型算法来解决完全离散的最佳控制问题。我们研究了问题的结构,并设计了一种细致的策略,以有效地为BFG寻求步进尺寸。数值方法的效率通过某些初步数值实验的结果有效验证。
The optimal control of thermally convective flows is usually modeled by an optimization problem with constraints of Boussinesq equations that consist of the Navier-Stokes equation and an advection-diffusion equation. This optimal control problem is challenging from both theoretical analysis and algorithmic design perspectives. For example, the nonlinearity and coupling of fluid flows and energy transports prevent direct applications of gradient type algorithms in practice. In this paper, we propose an efficient numerical method to solve this problem based on the operator splitting and optimization techniques. In particular, we employ the Marchuk-Yanenko method leveraged by the $L^2-$projection for the time discretization of the Boussinesq equations so that the Boussinesq equations are decomposed into some easier linear equations without any difficulty in deriving the corresponding adjoint system. Consequently, at each iteration, four easy linear advection-diffusion equations and two degenerated Stokes equations at each time step are needed to be solved for computing a gradient. Then, we apply the Bercovier-Pironneau finite element method for space discretization, and design a BFGS type algorithm for solving the fully discretized optimal control problem. We look into the structure of the problem, and design a meticulous strategy to seek step sizes for the BFGS efficiently. Efficiency of the numerical approach is promisingly validated by the results of some preliminary numerical experiments.