论文标题

无插件的高光谱图像对卷积的高卷积

Tuning-free Plug-and-Play Hyperspectral Image Deconvolution with Deep Priors

论文作者

Wang, Xiuheng, Chen, Jie, Richard, Cédric

论文摘要

反卷积是一种广泛使用的策略,可减轻采集设备产生的高光谱图像(HSI)的模糊和嘈杂降解。这个问题通常是通过解决不适合的逆问题来解决的。虽然研究适当的图像先验可以增强反卷积性能,但对手制作强大的正规化器并设置正则化参数并不是很微不足道的。为了解决这些问题,在本文中,我们引入了HSI反卷积的无调插件(PNP)算法。具体而言,我们使用乘数的交替方向方法(ADMM)将优化问题分解为两个迭代的子问题。灵活的盲人3D Denoising网络(B3DDN)旨在学习深度先验,并以不同的噪声水平来解决denoising子问题。然后,研究了3D残留白度的度量,以调整解决二次次级问题时的惩罚参数以及停止标准。对模拟和现实世界数据的实验结果具有地面真实性证明了该方法的优越性。

Deconvolution is a widely used strategy to mitigate the blurring and noisy degradation of hyperspectral images~(HSI) generated by the acquisition devices. This issue is usually addressed by solving an ill-posed inverse problem. While investigating proper image priors can enhance the deconvolution performance, it is not trivial to handcraft a powerful regularizer and to set the regularization parameters. To address these issues, in this paper we introduce a tuning-free Plug-and-Play (PnP) algorithm for HSI deconvolution. Specifically, we use the alternating direction method of multipliers (ADMM) to decompose the optimization problem into two iterative sub-problems. A flexible blind 3D denoising network (B3DDN) is designed to learn deep priors and to solve the denoising sub-problem with different noise levels. A measure of 3D residual whiteness is then investigated to adjust the penalty parameters when solving the quadratic sub-problems, as well as a stopping criterion. Experimental results on both simulated and real-world data with ground-truth demonstrate the superiority of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源