论文标题
微型播放:迈向超快速的超分辨率任意风格转移
MicroAST: Towards Super-Fast Ultra-Resolution Arbitrary Style Transfer
论文作者
论文摘要
任意样式转移(AST)将任意艺术风格转移到内容图像上。尽管最近取得了迅速的进展,但现有的AST方法要么无能为力,要么太慢,无法在超级分辨率(例如4K)上运行,资源有限,这极大地阻碍了他们的进一步应用。在本文中,我们通过学习一个名为Microast的简单明了,轻巧的模型来解决这一难题。关键的见解是完全放弃繁琐的预训练深度卷积神经网络(例如VGG)的使用。取而代之的是,我们设计了两个微型编码器(内容和样式编码器)和一个用于样式传输的微解码器。内容编码器旨在提取内容图像的主要结构。样式编码器,再加上调制器,将样式图像编码为可学习的双调节信号,该信号调节解码器的中间特征和卷积过滤器,从而注入了更复杂和灵活的样式信号,以指导样式。此外,为了提高样式编码器提取更独特和代表性的风格信号的能力,我们还引入了模型中的新样式信号对比损失。与艺术的状态相比,我们的微型不仅在视觉上产生了优越的结果,而且还要少5-73倍,并且在4K超级分辨率下首次实现了超快速(约0.5秒)的AST。代码可从https://github.com/endywon/microast获得。
Arbitrary style transfer (AST) transfers arbitrary artistic styles onto content images. Despite the recent rapid progress, existing AST methods are either incapable or too slow to run at ultra-resolutions (e.g., 4K) with limited resources, which heavily hinders their further applications. In this paper, we tackle this dilemma by learning a straightforward and lightweight model, dubbed MicroAST. The key insight is to completely abandon the use of cumbersome pre-trained Deep Convolutional Neural Networks (e.g., VGG) at inference. Instead, we design two micro encoders (content and style encoders) and one micro decoder for style transfer. The content encoder aims at extracting the main structure of the content image. The style encoder, coupled with a modulator, encodes the style image into learnable dual-modulation signals that modulate both intermediate features and convolutional filters of the decoder, thus injecting more sophisticated and flexible style signals to guide the stylizations. In addition, to boost the ability of the style encoder to extract more distinct and representative style signals, we also introduce a new style signal contrastive loss in our model. Compared to the state of the art, our MicroAST not only produces visually superior results but also is 5-73 times smaller and 6-18 times faster, for the first time enabling super-fast (about 0.5 seconds) AST at 4K ultra-resolutions. Code is available at https://github.com/EndyWon/MicroAST.