论文标题

逐渐进行双重先验引导的几镜语义分段

Progressively Dual Prior Guided Few-shot Semantic Segmentation

论文作者

Cao, Qinglong, Chen, Yuntian, Yao, Xiwen, Han, Junwei

论文摘要

很少有语义分割任务旨在用一些带注释的支持样本在查询图像中进行分割。当前,很少有射击分割方法主要集中于利用前景信息,而无需完全利用丰富的背景信息,这可能导致前景状背景区域的错误激活,而不适当地将其引起了支持 - 广告图像对的戏剧性改变。同时,缺乏细节挖掘机制可能会导致粗略的解析结果,而没有某些语义组件或边缘区域,因为原型的能力有限,无法应对较大的物体外观方差。为了解决这些问题,我们提出了一个逐步的双重指导性语义分割网络。具体而言,首先设计了双重先前的掩码生成(DPMG)模块,以通过背景的方式抑制错误的激活方式,即作为辅助改进信息。通过双重先验掩模,我们进一步提出了一个渐进的语义细节富集(PSDE)模块,该模块迫使解析模型通过迭代擦除高信心前景区域并用层次结构激活休息区域中的细节,从而捕获隐藏的语义细节。 DPMG和PSDE的合作制定了一个新颖的几弹性分割网络,可以以端到端的方式学习。关于Pascal-5i和MS Coco的综合实验有力地表明,我们提出的算法实现了出色的性能。

Few-shot semantic segmentation task aims at performing segmentation in query images with a few annotated support samples. Currently, few-shot segmentation methods mainly focus on leveraging foreground information without fully utilizing the rich background information, which could result in wrong activation of foreground-like background regions with the inadaptability to dramatic scene changes of support-query image pairs. Meanwhile, the lack of detail mining mechanism could cause coarse parsing results without some semantic components or edge areas since prototypes have limited ability to cope with large object appearance variance. To tackle these problems, we propose a progressively dual prior guided few-shot semantic segmentation network. Specifically, a dual prior mask generation (DPMG) module is firstly designed to suppress the wrong activation in foreground-background comparison manner by regarding background as assisted refinement information. With dual prior masks refining the location of foreground area, we further propose a progressive semantic detail enrichment (PSDE) module which forces the parsing model to capture the hidden semantic details by iteratively erasing the high-confidence foreground region and activating details in the rest region with a hierarchical structure. The collaboration of DPMG and PSDE formulates a novel few-shot segmentation network that can be learned in an end-to-end manner. Comprehensive experiments on PASCAL-5i and MS COCO powerfully demonstrate that our proposed algorithm achieves the great performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源