论文标题
离散的对称和量子数保存
Discrete symmetries and quantum number conservation
论文作者
论文摘要
离散$ p $和$ t $时空对称的代数配方与$ cl_ {3,3} $ sub-algebra定义的费米量量子数有关,效率衰减和交互作用已显示可保护由$ cl_ {7,7} $定义的所有七个二进制量子数。修改了先前配制的{\ it保护定律},以包括使用c =+1和c = $ -1 $的费米子的描述中使用不同的f,g量子数的效果。这与解释高能量实验的结果有关。
The algebraic formulation of discrete $P$ and $T$ space-time symmetries is related to fermion quantum numbers defined by a $Cl_{3,3}$ sub-algebra of the $Cl_{7,7}$ Clifford Unification algebra. Fermion decays and interactions have been shown to conserve all seven binary quantum numbers defined by $Cl_{7,7}$. The previously formulated {\it Conservation Law} is modified to include the effects of employing distinct F,G quantum numbers in descriptions of fermions with C=+1 and C=$-1$. This is relevant in interpreting the results of high energy experiments.