论文标题
从时空数据中发现动态模式,并使用时间变化的低级自动摄取
Discovering Dynamic Patterns from Spatiotemporal Data with Time-Varying Low-Rank Autoregression
论文作者
论文摘要
本文研究了对时空数据分析的广泛实际兴趣问题,即发现时空数据可解释的动态模式。为此,我们开发了一个随时间变化的减少级别矢量自动进程(VAR)模型,该模型的系数矩阵通过低级张量分解对参数化。从张量分解结构中受益,提出的模型可以同时实现模型压缩和模式发现。特别是,所提出的模型允许人们表征非平稳性和时变的系统行为。为了评估所提出的模型,对代表不同非线性动态系统的各种时空数据进行了广泛的实验,包括流体动力学,海面温度,美国表面温度和纽约市出租车旅行。实验结果证明了建模时空数据并使用所提出的模型来表征时空模式的有效性。在空间上下文中,空间模式可以自动提取和直观地以空间模式为特征。在时间上下文中,复杂的随时间变化的系统行为可以通过所提出的模型中的时间模式揭示。因此,我们的模型为了解现实世界动态系统中的复杂时空数据奠定了深刻的基础。改编的数据集和Python实现可在https://github.com/xinychen/vars上公开获得。
The problem of broad practical interest in spatiotemporal data analysis, i.e., discovering interpretable dynamic patterns from spatiotemporal data, is studied in this paper. Towards this end, we develop a time-varying reduced-rank vector autoregression (VAR) model whose coefficient matrices are parameterized by low-rank tensor factorization. Benefiting from the tensor factorization structure, the proposed model can simultaneously achieve model compression and pattern discovery. In particular, the proposed model allows one to characterize nonstationarity and time-varying system behaviors underlying spatiotemporal data. To evaluate the proposed model, extensive experiments are conducted on various spatiotemporal data representing different nonlinear dynamical systems, including fluid dynamics, sea surface temperature, USA surface temperature, and NYC taxi trips. Experimental results demonstrate the effectiveness of modeling spatiotemporal data and characterizing spatial/temporal patterns with the proposed model. In the spatial context, the spatial patterns can be automatically extracted and intuitively characterized by the spatial modes. In the temporal context, the complex time-varying system behaviors can be revealed by the temporal modes in the proposed model. Thus, our model lays an insightful foundation for understanding complex spatiotemporal data in real-world dynamical systems. The adapted datasets and Python implementation are publicly available at https://github.com/xinychen/vars.