论文标题

揭示财富分配的动力

Uncovering the Dynamics of the Wealth Distribution

论文作者

Blanchet, Thomas

论文摘要

我介绍了一种使用简单的连续时间随机模型分解财富分布演变的新方法,该模型将移动性,储蓄,劳动收入,回报率,人口统计学,遗产和分类交配的影响分开。基于随机演算的两个结果,我表明该分解是非参数鉴定的,并且可以仅基于数据的重复横截面来估计。自1962年以来,我使用有关收入,财富和人口统计学的历史数据对此进行了估算。我发现,自1980年代以来,最重要的1%财富份额的主要驱动因素一直在降低重要性,最高水平较高,较高的财富回报率(本质上是以资本收益的形式)以及较高的劳动收入不平等。然后,我使用该模型研究财富征税的影响。我得出了简单的公式,从长远来看,税基对税收率的反应是如何反应的,这些公式可以从几种现有模型中筑巢,并且可以使用可估计的弹性进行校准。在基准校准中,最高收入最大的财富税率很高(约为12%),但是从税收中收集的收入远低于静态案例。

I introduce a new way of decomposing the evolution of the wealth distribution using a simple continuous time stochastic model, which separates the effects of mobility, savings, labor income, rates of return, demography, inheritance, and assortative mating. Based on two results from stochastic calculus, I show that this decomposition is nonparametrically identified and can be estimated based solely on repeated cross-sections of the data. I estimate it in the United States since 1962 using historical data on income, wealth, and demography. I find that the main drivers of the rise of the top 1% wealth share since the 1980s have been, in decreasing level of importance, higher savings at the top, higher rates of return on wealth (essentially in the form of capital gains), and higher labor income inequality. I then use the model to study the effects of wealth taxation. I derive simple formulas for how the tax base reacts to the net-of-tax rate in the long run, which nest insights from several existing models, and can be calibrated using estimable elasticities. In the benchmark calibration, the revenue-maximizing wealth tax rate at the top is high (around 12%), but the revenue collected from the tax is much lower than in the static case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源