论文标题
NFTS交易网络的测量,分析和见解
Measurement, Analysis, and Insight of NFTs Transaction Networks
论文作者
论文摘要
无牙代币(NFTS)是具有区块链托管所有权的独特数字项目。基于以太坊区块链的智能合约创造了NFTS(ERC721)的环境,以达到其未来最重要的应用程序域之一。当市场看到2021年的销售创纪录的销售中,几乎可以通过将它们作为NFT铸造在区块链网络上时,几乎可以在区块链网络上将其追溯和交易。 NFT为用户提供了分散的所有权表示证明,因为NFT的每笔交易和交易都记录在以太坊网络块中。 NFT的价值源于它们的不可替代的含义,即代币不能被相同的令牌取代(给它固有的稀缺性)。在本文中,我们研究了NFT网络的增长率和进化性质,并尝试了解NFT生态系统。我们从时间图的角度探讨了NFT相互作用网络的不断发展的性质。我们研究了网络语义的增长率和观察者。在观察者网络上,我们将在数据集上运行两种图形算法。最后,通过将对数周期性功率法(LPPL)模型应用于最著名的NFT收藏品(预测价格上涨)的时间序列数据,观察和预测NFTS泡沫的生存,该模型在2021年中期左右的销售额约为2370万美元。
Non-fungible tokens (NFTs) are unique digital items with blockchain managed ownership. Ethereum blockchain based smart contract created the environment for NFTs (ERC721) to reach its one of the most important future application domains. Non fungible tokens got more attention when the market saw record breaking sales in 2021. Virtually anything of value can be traced and traded on the blockchain network by minting them as NFTs. NFTs provide the users with a decentralized proof of ownership representation, as every transaction and trade of NFTs gets recorded in the Ethereum network blocks. The value of NFTs is derived from their being non fungible meaning that the token cannot be replaced with an identical token (giving it inherent scarcity). In this paper, we study the growth rate and evolutionary nature of the NFT network and try to understand the NFT ecosystem. We explore the evolving nature of the NFT interaction network from a temporal graph perspective. We study the growth rate and observer the semantics of the network. Here on the observer network, we will run two graph algorithms on the dataset. Lastly, observe and forecast the survival of NFTs bubble by applying the Logarithmic periodic power law (LPPL) model to the time series data on one of the most famous NFT collections CryptoPunks (predicting price increase), which has seen sales of around $23.7 million around mid of 2021.