论文标题

库拉马托模型中的信息几何形状和同步相变

Information geometry and synchronization phase transition in Kuramoto model

论文作者

Alexandrov, Artem, Gorsky, Alexander

论文摘要

我们讨论了最近提出的库拉莫托模型的描述,以双曲线空间为角度,并将其与信息几何形状相关联。特别是,库拉莫托全能模型中的动力学方程是通过统计歧管上的kullback-leibner差异的梯度流识别的。评估了库拉莫托和库拉莫托 - 沙卡吉奇模型的Fisher信息指标。我们认为,Fisher度量分量在临界点处的分量,因此可以用作同步相变的替代顺序参数。

We discuss the recently proposed description of Kuramoto model in terms of hyperbolic space and relate it to the information geometry. In particular the dynamical equation in Kuramoto all-to-all model is identified with the gradient flow of the Kullback-Leibner divergence on the statistical manifold. The Fisher information metric is evaluated for the Kuramoto and Kuramoto-Shakagichi models. We argue that the components of Fisher metric diverge at the critical point hence it can be used as an alternative order parameter for the synchronization phase transition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源