论文标题
库拉马托模型中的信息几何形状和同步相变
Information geometry and synchronization phase transition in Kuramoto model
论文作者
论文摘要
我们讨论了最近提出的库拉莫托模型的描述,以双曲线空间为角度,并将其与信息几何形状相关联。特别是,库拉莫托全能模型中的动力学方程是通过统计歧管上的kullback-leibner差异的梯度流识别的。评估了库拉莫托和库拉莫托 - 沙卡吉奇模型的Fisher信息指标。我们认为,Fisher度量分量在临界点处的分量,因此可以用作同步相变的替代顺序参数。
We discuss the recently proposed description of Kuramoto model in terms of hyperbolic space and relate it to the information geometry. In particular the dynamical equation in Kuramoto all-to-all model is identified with the gradient flow of the Kullback-Leibner divergence on the statistical manifold. The Fisher information metric is evaluated for the Kuramoto and Kuramoto-Shakagichi models. We argue that the components of Fisher metric diverge at the critical point hence it can be used as an alternative order parameter for the synchronization phase transition.