论文标题

地理空间探索的视觉主动搜索框架

A Visual Active Search Framework for Geospatial Exploration

论文作者

Sarkar, Anindya, Lanier, Michael, Alfeld, Scott, Feng, Jiarui, Garnett, Roman, Jacobs, Nathan, Vorobeychik, Yevgeniy

论文摘要

许多问题可以看作是通过空中图像辅助地理空间搜索的形式,其例子从检测偷猎活动到人口贩运。我们在视觉主动搜索(VAS)框架中对此类别的问题进行建模,该框架具有三个关键输入:(1)整个搜索区域的图像,该图像被细分为区域,(2)一个本地搜索功能,该功能确定在给定的区域中是否存在先前看不见的对象类,以及(3)固定搜索预算,限制了本地搜索功能的次数。目标是最大化搜索预算中发现的对象数量。我们为VA提出了一种加强学习方法,该方法从一系列完全注释的搜索任务中学习了元搜索策略。然后,该元搜索策略用于动态搜索新型的目标对象类,利用任何以前的查询的结果来确定下一步查询的地方。通过对几个大规模卫星图像数据集进行的广泛实验,我们表明所提出的方法显着优于几个强大的基准。我们还提出了新颖的领域适应技术,这些技术在培训数据中存在重要的领域差距时,在决策时间改善了政策。代码公开可用。

Many problems can be viewed as forms of geospatial search aided by aerial imagery, with examples ranging from detecting poaching activity to human trafficking. We model this class of problems in a visual active search (VAS) framework, which has three key inputs: (1) an image of the entire search area, which is subdivided into regions, (2) a local search function, which determines whether a previously unseen object class is present in a given region, and (3) a fixed search budget, which limits the number of times the local search function can be evaluated. The goal is to maximize the number of objects found within the search budget. We propose a reinforcement learning approach for VAS that learns a meta-search policy from a collection of fully annotated search tasks. This meta-search policy is then used to dynamically search for a novel target-object class, leveraging the outcome of any previous queries to determine where to query next. Through extensive experiments on several large-scale satellite imagery datasets, we show that the proposed approach significantly outperforms several strong baselines. We also propose novel domain adaptation techniques that improve the policy at decision time when there is a significant domain gap with the training data. Code is publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源