论文标题

在订单单位空间的几何形状上

On the geometry of an order unit space

论文作者

Karn, Anil Kumar

论文摘要

我们介绍了$ \ mathit {skeleton} $的概念,并在非零的真实矢量空间中介绍了头。我们证明,带有头部的骨骼以几何形式描述订单单位空间。接下来,我们考虑$ \ mathit {courphery} $的概念,与骨架的一部分相对应。我们注意到,外围由带有单位规范的正锥的边界要素组成。我们讨论周围的一些基本特性。我们还找到了一个条件,在该条件下,$ v $将包含$ \ ell _ {\ infty}^n $的副本,对于某些$ n \ in \ mathbb {n} $作为订单单位子空间。

We introduce the notion of $\mathit{skeleton}$ with a head in a non-zero real vector space. We prove that skeletons with heads describe order unit spaces geometrically. Next, we consider the notion of $\mathit{periphery}$ corresponding to an order unit space which is a part of the skeleton. We note that periphery consists of boundary elements of the positive cone with unit norms. We discuss some elementary properties of the periphery. We also find a condition under which $V$ would contain a copy of $\ell_{\infty}^n$ for some $n \in \mathbb{N}$ as an order unit subspace.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源