论文标题

Moda:用于自我监督的域的适应性域的地图样式转移

MoDA: Map style transfer for self-supervised Domain Adaptation of embodied agents

论文作者

Lee, Eun Sun, Kim, Junho, Park, SangWon, Kim, Young Min

论文摘要

我们提出了一种域适应方法Moda,该方法在没有地面实际监督的情况下适应了经过预告片的体现的代理。基于地图的内存为视觉导航提供了重要的上下文信息,并展示了主要由平坦壁和矩形障碍物组成的独特空间结构。我们的适应方法鼓励估计地图上的固有规律性,以指导代理在新的环境中克服普遍的领域差异。具体来说,我们提出了一个有效的学习课程,以在线方式处理视觉和动态损坏,并通过样式转移网络生成的伪清洁地图进行自我监管。因为基于地图的表示为代理商的策略提供了空间知识,所以我们的公式可以在新设置中部署模拟器验证的策略网络。我们在各种实际情况下评估MODA,并表明我们提出的方法迅速增强了代理商在下游任务中的性能,包括本地化,映射,勘探和点目标导航。

We propose a domain adaptation method, MoDA, which adapts a pretrained embodied agent to a new, noisy environment without ground-truth supervision. Map-based memory provides important contextual information for visual navigation, and exhibits unique spatial structure mainly composed of flat walls and rectangular obstacles. Our adaptation approach encourages the inherent regularities on the estimated maps to guide the agent to overcome the prevalent domain discrepancy in a novel environment. Specifically, we propose an efficient learning curriculum to handle the visual and dynamics corruptions in an online manner, self-supervised with pseudo clean maps generated by style transfer networks. Because the map-based representation provides spatial knowledge for the agent's policy, our formulation can deploy the pretrained policy networks from simulators in a new setting. We evaluate MoDA in various practical scenarios and show that our proposed method quickly enhances the agent's performance in downstream tasks including localization, mapping, exploration, and point-goal navigation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源