论文标题
朝着配对原子密度拟合,以与基准精度相关的能量
Towards Pair Atomic Density Fitting for Correlation Energies with Benchmark Accuracy
论文作者
论文摘要
配对原子密度拟合(PADF)是一种有前途的策略,可以使用量子化学方法的系统大小来计算相关能量的系统大小,例如直接随机相位近似(RPA)或二阶Møller-plesset扰动理论(MP2)。但是,PADF可以在相关能量中引入较大的误差,因为不能从下方界定两电子相互作用能量。可以通过使用非常大的拟合设置来部分缓解此问题,但这是以降低效率的价格,并且必须处理拟合设置中的近乎线性依赖性。在这项工作中,我们引入了一种克服这个问题的替代方法,以保留PADF的本质上有利的缩放。我们首先通过投影基集的一部分来使Fock矩阵正规化,从而产生轨道产品,而轨道产品很难由PADF描述。然后,我们还将该投影仪应用于轨道系数矩阵,以提高PADF-MP2和PADF-RPA的精度。我们在数值原子轨道框架中使用Slater类型轨道(STO)(STO)和相关性一致的高斯类型基础设置为数值原子轨道框架中,我们系统地评估了这种新方法的准确性。对于S66数据库中的中小型系统,我们显示了PADF-MP2和PADF-RPA相对相关能量与DF-MP2和DF-RPA参考结果的最大偏差分别为0.07和0.14 kcal/mol。当使用新的投影仪方法时,大分子的误差仅略有增加,当使用适度的拟合集时,所产生的误差就可以很好地控制。最后,我们通过计算RPA@PBE/CC-PVTZ理论水平的非共价结合的复合物的相互作用能量来证明算法的计算效率。
Pair atomic density fitting (PADF) is a promising strategy to reduce the scaling with system size of quantum chemical methods for the calculation of the correlation energy like the direct random phase approximation (RPA) or second-order Møller-Plesset perturbation theory (MP2). PADF can however introduce large errors in correlation energies as the two-electron interaction energy is not guaranteed to be bounded from below. This issue can be partially alleviated by using very large fit sets, but this comes at the price of reduced efficiency and having to deal with near-linear dependencies in the fit set. In this work, we introduce an alternative methodology to overcome this problem that preserves the intrinsically favourable scaling of PADF. We first regularize the Fock matrix by projecting out parts of the basis set which gives rise to orbital products that are hard to describe by PADF. We then also apply this projector to the orbital coefficient matrix to improve the precision of PADF-MP2 and PADF-RPA. We systematically assess the accuracy of this new approach in a numerical atomic orbital framework using Slater Type Orbitals (STO) and correlation consistent Gaussian type basis sets up to quintuple-$ζ$ quality for systems with more than 200 atoms. For the small and medium systems in the S66 database we show the maximum deviation of PADF-MP2 and PADF-RPA relative correlation energies to DF-MP2 and DF-RPA reference results to be 0.07 and 0.14 kcal/mol respectively. When the new projector method is used, the errors only slightly increase for large molecules and also when moderately sized fit sets are used the resulting errors are well under control. Finally, we demonstrate the computational efficiency of our algorithm by calculating the interaction energies of non-covalently bound complexes with more than 1000 atoms and 20000 atomic orbitals at the RPA@PBE/CC-pVTZ level of theory.