论文标题

使用马尔可夫链蒙特卡洛(Monte Carlo)的线性统计形状模型之间的近似交叉点和差异

Approximating Intersections and Differences Between Linear Statistical Shape Models Using Markov Chain Monte Carlo

论文作者

Weiherer, Maximilian, Klein, Finn, Egger, Bernhard

论文摘要

迄今为止,统计形状模型(SSM)的比较通常完全基于性能,通过简单的指标(例如紧凑,概括或特异性)进行。实际形状空间之间的任何相似性或差异都不能被可视化或量化。在本文中,我们提出了一种新方法,通过计算模型跨越的(超elipsoidal)允许的形状域之间的近似交点空间和设置理论差异,从而定性地比较了两个线性SSM。为此,我们使用马尔可夫链蒙特卡洛(Monte Carlo)近似位于交叉空间中的形状分布,然后将主成分分析(PCA)应用于后样品,最终产生了交叉空间的新SSM。我们以类似的方式估计线性SSM之间的差异。但是,在这里,所得的空间不再是凸,我们不应用PCA,而是使用后验样品进行可视化。我们通过计算和分析交点空间以及公开可用的面部模型之间的差异来质量地展示所提出的算法,重点是性别特定的男性和女性以及身份和表达模型。我们基于由合成和现实世界数据集构建的SSM的定量评估提供了详细的证据,表明所引入的方法能够准确恢复地面真相的交点空间和差异。

To date, the comparison of Statistical Shape Models (SSMs) is often solely performance-based, carried out by means of simplistic metrics such as compactness, generalization, or specificity. Any similarities or differences between the actual shape spaces can neither be visualized nor quantified. In this paper, we present a new method to qualitatively compare two linear SSMs in dense correspondence by computing approximate intersection spaces and set-theoretic differences between the (hyper-ellipsoidal) allowable shape domains spanned by the models. To this end, we approximate the distribution of shapes lying in the intersection space using Markov chain Monte Carlo and subsequently apply Principal Component Analysis (PCA) to the posterior samples, eventually yielding a new SSM of the intersection space. We estimate differences between linear SSMs in a similar manner; here, however, the resulting spaces are no longer convex and we do not apply PCA but instead use the posterior samples for visualization. We showcase the proposed algorithm qualitatively by computing and analyzing intersection spaces and differences between publicly available face models, focusing on gender-specific male and female as well as identity and expression models. Our quantitative evaluation based on SSMs built from synthetic and real-world data sets provides detailed evidence that the introduced method is able to recover ground-truth intersection spaces and differences accurately.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源