论文标题
总统治游戏的3/4猜想的证明
A proof of the 3/4 conjecture for the total domination game
论文作者
论文摘要
在本文中,我们描述了一种统治者的策略,该策略最多可以在$ n $顶点上的每张图$ g $ to $ 3/4n $移动,而无需任何孤立的顶点或边缘,证实了Henning,KLAV {Ž}} AR和RALL的3/4键入的总统治游戏。
In this paper we describe a strategy for Dominator that finishes the total domination game in at most $3/4n$ moves for every graph $G$ on $n$ vertices without any isolated vertices or edges, confirming the 3/4-conjecture for the total domination game made by Henning, Klav{ž}ar, and Rall.