论文标题

自洽的量子迭代性稀疏哈密顿法(Squish):一种用于高效哈密顿模拟和压缩的新算法

Self-consistent Quantum Iteratively Sparsified Hamiltonian method (SQuISH): A new algorithm for efficient Hamiltonian simulation and compression

论文作者

Chamaki, Diana B., Hadfield, Stuart, Klymko, Katherine, O'Gorman, Bryan, Tubman, Norm M.

论文摘要

由于连贯的时间限制,减少运行量子算法并在量子计算机上模拟物理系统所需的资源至关重要。关于汉密尔顿模拟,一项巨大的努力集中在使用各种因素化和截断的构建有效算法上,通常仅来自哈密顿式。我们引入了一种新的范式,用于改善哈密顿模拟并根据最近为经典化学模拟开发的思想而降低基态问题的成本。关键的想法是,人们可以通过使用两个关键信息来找到有效的方法来减少量子算法所需的资源:汉密尔顿操作员和近似地面状态波函数。我们将我们的算法称为$ \ textit {self consistent Quantum迭代性稀疏的Hamiltonian} $(Squish)。通过迭代地执行我们的方案,可以使用截短的,资源有效的哈密顿式驱动挤压以创建精确的波功能。利用这种截短的哈密顿量提供了一种方法,可以减少量子硬件对基态计算的栅极复杂性。作为原理的证明,我们使用用于小分子的配置相互作用来实现挤压,并为较大的系统耦合群集。通过我们的方法组合,我们演示了在一系列系统上的表现,其中最大的是200量QUAT来运行量子硬件。尽管我们的演示是在一系列电子结构问题上,但我们的方法相对通用,因此很可能受益于汉密尔顿人产生计算瓶颈的问题大小的其他应用。

It is crucial to reduce the resources required to run quantum algorithms and simulate physical systems on quantum computers due to coherence time limitations. With regards to Hamiltonian simulation, a significant effort has focused on building efficient algorithms using various factorizations and truncations, typically derived from the Hamiltonian alone. We introduce a new paradigm for improving Hamiltonian simulation and reducing the cost of ground state problems based on ideas recently developed for classical chemistry simulations. The key idea is that one can find efficient ways to reduce resources needed by quantum algorithms by making use of two key pieces of information: the Hamiltonian operator and an approximate ground state wavefunction. We refer to our algorithm as the $\textit{Self-consistent Quantum Iteratively Sparsified Hamiltonian}$ (SQuISH). By performing our scheme iteratively, one can drive SQuISH to create an accurate wavefunction using a truncated, resource-efficient Hamiltonian. Utilizing this truncated Hamiltonian provides an approach to reduce the gate complexity of ground state calculations on quantum hardware. As proof of principle, we implement SQuISH using configuration interaction for small molecules and coupled cluster for larger systems. Through our combination of approaches, we demonstrate how SQuISH performs on a range of systems, the largest of which would require more than 200 qubits to run on quantum hardware. Though our demonstrations are on a series of electronic structure problems, our approach is relatively generic and hence likely to benefit additional applications where the size of the problem Hamiltonian creates a computational bottleneck.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源