论文标题
平面C-Polygon的顶点分类
Vertex Classification of Planar C-polygons
论文作者
论文摘要
鉴于凸域$ c $,$ c $ -polygon是$ n \ geq 2 $ hysothets $ c $的交集。如果同型人的翻译为$ c $,那么我们将交叉点称为翻译$ c $ -polygon。本文证明,如果$ c $是具有$ m $单数边界点的严格凸域,那么单数边界点的数量a $ c $ -polygon的数量在$ n $ n $至2 $ 2(n-1)+m $之间。对于翻译$ c $ -polygon,我们显示单数边界点的数量在$ n $和$ n+m $之间。
Given a convex domain $C$, a $C$-polygon is an intersection of $n\geq 2$ homothets of $C$. If the homothets are translates of $C$ then we call the intersection a translative $C$-polygon. This paper proves that if $C$ is a strictly convex domain with $m$ singular boundary points, then the number of singular boundary points a $C$-polygon has is between $n$ and $2(n-1)+m$. For a translative $C$-polygon we show the number of singular boundary points is between $n$ and $n+m$.