论文标题

Aioner:使用深度学习的基于总体方案的生物医学命名实体识别

AIONER: All-in-one scheme-based biomedical named entity recognition using deep learning

论文作者

Luo, Ling, Wei, Chih-Hsuan, Lai, Po-Ting, Leaman, Robert, Chen, Qingyu, Lu, Zhiyong

论文摘要

生物医学命名实体识别(Bioner)试图自动识别自然语言文本中的生物医学实体,这是下游文本挖掘任务和应用程序(例如信息提取和问题回答)的必要基础。但是,由于准确注释所需的重要领域专业知识,手动标记Bioner任务的培训数据是昂贵的。由此产生的数据稀缺性导致当前的Bioner方法容易过度拟合,遭受有限的普遍性,并且一次(例如基因或疾病)一次解决单个实体类型。因此,我们提出了一种新型的多合一(AIO)方案,该方案使用现有注释资源中的外部数据来增强Bioner模型的准确性和稳定性。我们进一步提出了Aioner,这是一种基于最先进的深度学习和我们的AIO模式的通用双极工具。我们在14个Bioner基准任务上评估了Aioner,并表明Aioner具有有效,强大,并且可以与其他最先进的方法(例如多任务学习)进行比较。我们进一步证明了Aioner在三个独立任务中的实际实用性,以识别以前在训练数据中看不见的实体类型,以及Aioner的优势,而不是现有方法,用于大规模处理生物医学文本(例如,整个PubMed数据)。

Biomedical named entity recognition (BioNER) seeks to automatically recognize biomedical entities in natural language text, serving as a necessary foundation for downstream text mining tasks and applications such as information extraction and question answering. Manually labeling training data for the BioNER task is costly, however, due to the significant domain expertise required for accurate annotation. The resulting data scarcity causes current BioNER approaches to be prone to overfitting, to suffer from limited generalizability, and to address a single entity type at a time (e.g., gene or disease). We therefore propose a novel all-in-one (AIO) scheme that uses external data from existing annotated resources to enhance the accuracy and stability of BioNER models. We further present AIONER, a general-purpose BioNER tool based on cutting-edge deep learning and our AIO schema. We evaluate AIONER on 14 BioNER benchmark tasks and show that AIONER is effective, robust, and compares favorably to other state-of-the-art approaches such as multi-task learning. We further demonstrate the practical utility of AIONER in three independent tasks to recognize entity types not previously seen in training data, as well as the advantages of AIONER over existing methods for processing biomedical text at a large scale (e.g., the entire PubMed data).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源