论文标题

表面准整形前方方程的适应性良好

Well-posedness for the surface quasi-geostrophic front equation

论文作者

Ai, Albert, Avadanei, Ovidiu-Neculai

论文摘要

我们考虑表面准晶状体(SQG)前方方程的良好性。 Hunter-Shu-Zhang [9]在较小的数据条件下建立了良好的性能以及方程非线性扩展的收敛条件。在本文中,我们建立了无条件的大数据,该数据的本地方程局部良好,同时也提高了初始数据的低规律性阈值。此外,我们通过使用Ifim-Tataru的波包方法进行测试,在粗糙的数据制度中建立了全球辅助性理论。

We consider the well-posedness of the surface quasi-geostrophic (SQG) front equation. Hunter-Shu-Zhang [9] established well-posedness under a small data condition as well as a convergence condition on an expansion of the equation's nonlinearity. In the present article, we establish unconditional large data local well-posedness of the SQG front equation, while also improving the low regularity threshold for the initial data. In addition, we establish global well-posedness theory in the rough data regime by using the testing by wave packet approach of Ifrim-Tataru.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源