论文标题
通过句子语义分割指导有条件变分自动编码器来建模复杂的对话映射
Modeling Complex Dialogue Mappings via Sentence Semantic Segmentation Guided Conditional Variational Auto-Encoder
论文作者
论文摘要
复杂的对话映射(CDM),包括一对多和一对一的映射,倾向于使对话模型产生不连贯或乏味的响应,并且对这些映射进行建模仍然是神经对话系统的巨大挑战。为了减轻这些问题,提出了诸如引入外部信息,重建优化函数并操纵数据样本之类的方法,同时他们主要致力于避免使用CDM进行培训,不可避免地会削弱该模型在人类对话中的理解能力,并限制了模型性能的进一步改进。本文提出了一个句子语义\ textbf {seg}的指导\ textbf {c} on-ditional \ textbf {v} ariational \ textbf {a} uto- \ textbf {e} ncoder(segcvae)方法,该方法可以建模并获得cdm cdm数据的模型。具体而言,为了解决由一对多的不一致的问题,Segcvae使用与响应相关的突出语义来限制潜在变量。为了减轻多个多样性问题,Segcvae片段多种突出的语义来丰富潜在变量。提出了三个新的组成部分,即内部分离,外部指导和语义规范,以实现SEGCVAE。关于对话生成任务,自动评估结果均表明Segcvae实现了新的最新性能。
Complex dialogue mappings (CDM), including one-to-many and many-to-one mappings, tend to make dialogue models generate incoherent or dull responses, and modeling these mappings remains a huge challenge for neural dialogue systems. To alleviate these problems, methods like introducing external information, reconstructing the optimization function, and manipulating data samples are proposed, while they primarily focus on avoiding training with CDM, inevitably weakening the model's ability of understanding CDM in human conversations and limiting further improvements in model performance. This paper proposes a Sentence Semantic \textbf{Seg}mentation guided \textbf{C}onditional \textbf{V}ariational \textbf{A}uto-\textbf{E}ncoder (SegCVAE) method which can model and take advantages of the CDM data. Specifically, to tackle the incoherent problem caused by one-to-many, SegCVAE uses response-related prominent semantics to constrained the latent variable. To mitigate the non-diverse problem brought by many-to-one, SegCVAE segments multiple prominent semantics to enrich the latent variables. Three novel components, Internal Separation, External Guidance, and Semantic Norms, are proposed to achieve SegCVAE. On dialogue generation tasks, both the automatic and human evaluation results show that SegCVAE achieves new state-of-the-art performance.