论文标题

量子计算机上的矩阵大爆炸

A Matrix Big Bang on a Quantum Computer

论文作者

Chandra, Viti, Feng, Yuan, McGuigan, Michael

论文摘要

M理论是一种神秘的理论,试图将不同的弦理论统一在一个较低的维度上。研究最多的例子是十一维,但已经考虑了其他维度。非关键M理论试图团结不同的非关键弦理论。从计算的角度来看,非临界M理论应该更简单地模拟,因为它们的字段少于11维M理论。非关键M理论的简单性将其延​​续到量子计算上,我们表明量子模拟所需的量子和Pauli术语少于关键M理论。作为量子计算的例子,我们研究了有限差和振荡器基础上非临界M理论基质模型基态模型的基态能量的量子计算,并使用变异量子量化量子(VQE)algorithm比较了不同基础的Pauli术语的准确性,量子数和量子的数量和不同基础的Pauli术语。我们使用trotter近似值使用哈密顿量(EOH)量子算法的进化来研究量子计算机上的“矩阵大爆炸”的非临界M-理论解决方案,并使用量子计算可以使用量子计算获得准确性和结果。最后,我们通过使用VQE算法研究BRST LAPLACIAN来考虑使用量子计算和计算BRST不变态的3D M理论矩阵模型的BRST量化。

M-theory is a mysterious theory that seeks to unite different string theories in one lower dimension. The most studied example is eleven dimensional but other dimensions have been considered. The non-critical M-theories seek to unite different non-critical string theories. From the point of view of computing, non-critical M-theories should be simpler to simulate as they have fewer fields than eleven dimensional M-theory. The simplicity of non-critical M-theory carries over to quantum computing and we show that the quantum simulation requires fewer qubits and Pauli terms than critical M-theory. As an example quantum calculation we study the quantum computation of the ground state energy of Matrix models of non-critical M-theory in 3d in the finite difference and oscillator basis and compare the accuracy, number of qubits and number of Pauli terms of the different basis using the Variational Quantum Eigensolver (VQE) algorithm. We study non-critical M- Theory solutions with space-time singularities referred to as a "Matrix Big Bang" on the Quantum Computer using the Evolution of Hamiltonian (EOH) quantum algorithm using the Trotter approximation and compare the accuracy and results the can be obtained using quantum computation. Finally we consider the BRST quantization of the 3d M-theory Matrix model using quantum computation and compute BRST invariant states by studying the BRST Laplacian using the VQE algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源