论文标题
通过样本自适应剪辑进行差异私人学习
Differentially Private Learning with Per-Sample Adaptive Clipping
论文作者
论文摘要
近年来,AI的隐私仍然引起了研究人员和公众的关注。作为实施隐私AI的一种方法,差异化学习是一个框架,使AI模型可以使用差异隐私(DP)。为了在学习过程中实现DP,现有算法通常会限制持续剪辑的梯度的大小,这需要仔细调整,因为它对模型性能的重大影响。作为解决此问题的解决方案,NSGD和自动S的最新作品是创新的,提议使用归一化而不是剪切以避免过度参数调整。但是,基于标准化的方法(例如NSGD和自动S)依赖于单调的重量功能,该功能对小梯度样本施加过多的重量,并引入更新的额外偏差。在本文中,我们提出了基于非单调的自适应重量函数的差异私有样本自适应剪辑(DP-PSAC)算法,该算法可以保证无需典型的超级参数调谐过程,即使用恒定的剪辑过程,同时显着降低了更新和真实的批次 - 批次 - 批次逐步梯度之间的偏差。我们提供了严格的理论收敛分析,并表明,与NSGD/AUTO-S相比,所提出的算法以相同的顺序融合率达到了较低的非变化结合。此外,通过广泛的实验评估,我们表明DP-PSAC的表现优于多个主流视觉和语言任务的最新方法。
Privacy in AI remains a topic that draws attention from researchers and the general public in recent years. As one way to implement privacy-preserving AI, differentially private learning is a framework that enables AI models to use differential privacy (DP). To achieve DP in the learning process, existing algorithms typically limit the magnitude of gradients with a constant clipping, which requires carefully tuned due to its significant impact on model performance. As a solution to this issue, latest works NSGD and Auto-S innovatively propose to use normalization instead of clipping to avoid hyperparameter tuning. However, normalization-based approaches like NSGD and Auto-S rely on a monotonic weight function, which imposes excessive weight on small gradient samples and introduces extra deviation to the update. In this paper, we propose a Differentially Private Per-Sample Adaptive Clipping (DP-PSAC) algorithm based on a non-monotonic adaptive weight function, which guarantees privacy without the typical hyperparameter tuning process of using a constant clipping while significantly reducing the deviation between the update and true batch-averaged gradient. We provide a rigorous theoretical convergence analysis and show that with convergence rate at the same order, the proposed algorithm achieves a lower non-vanishing bound, which is maintained over training iterations, compared with NSGD/Auto-S. In addition, through extensive experimental evaluation, we show that DP-PSAC outperforms or matches the state-of-the-art methods on multiple main-stream vision and language tasks.