论文标题
本地Frobenius代数和HOPF代数
Locally Frobenius algebras and Hopf algebras
论文作者
论文摘要
我们开发了\ emph {局部frobenius代数}的理论,该理论是弗罗贝尼乌斯代数的某些定向系统的理论。一个主要目标是获得摩尔\&peterson和Margolis在\ emph {几乎frobenius代数}和\ emph {$ p $ -Algebras}上的类似物,该作品适用于等级的Hopf代数(例如Steenrod Algebra)。这种局部的Frobenius代数是连贯的,在研究它们的模块时,我们自然地将重点放在相干和有限的维数模块上。确实,本地frobenius代数$ a $的连贯模块类别是Abelian,因为$ A $相对于连贯的模块是授权的,因此具有足够的投影和注射剂。但是,它只有有限的限制和colimit。有限维数模块也形成了Abelian类别,但有限的维数模块永远不会连贯。局部frobenius代数的最低理想正是同构与连贯的简单模块的理想。特别是它不包含任何有限尺寸简单模块的副本,因此它不是Kasch代数。我们讨论了此类代数的稳定模块类别的可能版本。我们还讨论了局部Frobenius Hopf代数的模块类别的可能的单体结构:例如,相干模块的张量产品被证明是伪共构剂。本地Frobenius Hopf代数的例子包括本地有限群体的组代数,这些代数已经在文献中进行了深入研究。
We develop a theory of \emph{locally Frobenius algebras} which are colimits of certain directed systems of Frobenius algebras. A major goal is to obtain analogues of the work of Moore \& Peterson and Margolis on \emph{nearly Frobenius algebras} and \emph{$P$-algebras} which was applied to graded Hopf algebras such as the Steenrod algebra for a prime. Such locally Frobenius algebras are coherent and in studying their modules we are naturally led to focus on coherent and finite dimensional modules. Indeed, the category of coherent modules over locally Frobenius algebra $A$ is abelian with enough projectives and injectives since $A$ is injective relative to the coherent modules; however it only has finite limits and colimits. The finite dimensional modules also form an abelian category but finite dimensional modules are never coherent. The minimal ideals of a locally Frobenius algebra are precisely the ones which are isomorphic to coherent simple modules; in particular it does not contain a copy of any finite dimensional simple module so it is not a Kasch algebra. We discuss possible versions of stable module categories for such algebras. We also discuss possible monoidal structures on module categories of a locally Frobenius Hopf algebra: for example tensor products of coherent modules turn out to be pseudo-coherent. Examples of locally Frobenius Hopf algebras include group algebras of locally finite groups, already intensively studied in the literature.