论文标题

语言模型预先培训真正的负面因素

Language Model Pre-training on True Negatives

论文作者

Zhang, Zhuosheng, Zhao, Hai, Utiyama, Masao, Sumita, Eiichiro

论文摘要

歧视性训练的语言模型(PLM)学会从有意损坏的语言中预测原始文本。将前文本视为正面样本,将PLM视为负样本,可以有效地训练PLM以进行情境化表示。但是,这种类型的PLM的培训高度依赖于自动构造样品的质量。现有的PLM简单地将所有损坏的文本视为相等的负面,而没有进行任何检查,这实际上使最终的模型不可避免地会遭受虚假的负面问题,在该问题上进行了伪阴性数据的培训,并且导致效率和较低的稳健性。在这项工作中,基于很长一段时间以来一直忽略的歧视性PLM中的假负问题,我们设计了增强的训练预训练方法,以抵消虚假的负面预测,并通过纠正由虚假负面预测的主题来抵消真实负面的培训语言模型。胶水和小队基准测试的实验结果表明,我们的反式阴性预训练方法确实带来了更好的性能,并具有更强的鲁棒性。

Discriminative pre-trained language models (PLMs) learn to predict original texts from intentionally corrupted ones. Taking the former text as positive and the latter as negative samples, the PLM can be trained effectively for contextualized representation. However, the training of such a type of PLMs highly relies on the quality of the automatically constructed samples. Existing PLMs simply treat all corrupted texts as equal negative without any examination, which actually lets the resulting model inevitably suffer from the false negative issue where training is carried out on pseudo-negative data and leads to less efficiency and less robustness in the resulting PLMs. In this work, on the basis of defining the false negative issue in discriminative PLMs that has been ignored for a long time, we design enhanced pre-training methods to counteract false negative predictions and encourage pre-training language models on true negatives by correcting the harmful gradient updates subject to false negative predictions. Experimental results on GLUE and SQuAD benchmarks show that our counter-false-negative pre-training methods indeed bring about better performance together with stronger robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源