论文标题

建模DG Tau B中的CO流出:扫荡的壳与扰动的MHD磁盘风

Modeling the CO outflow in DG Tau B: Swept-up shells versus perturbed MHD disk wind

论文作者

de Valon, A., Dougados, C., Cabrit, S., Louvet, F., Zapata, L. A., Mardones, D.

论文摘要

流出的起源及其对磁盘进化和行星形成的确切影响仍然是至关重要的开放问题。 DG Tau B是与旋转锥体CO流出和结构化磁盘相关的I类Protostar。因此,研究这些问题是理想的目标。我们旨在表征DG Tau B流出的形态和运动学,以阐明其起源和对磁盘的潜在影响。我们的分析基于Atacama大毫米阵列(ALMA)12CO(2-1)在20 au角度分辨率下DG Tau B的观察结果。我们以明显的加速度在此流出(拱形,手指和尖)中表征了三种不同类型的子结构。具有哈勃定律的风向壳模型无法解释这些子结构。相比之下,圆锥流的形态和运动学都可以通过稳定的圆锥形磁流体动力学(MHD)磁盘风,具有脚点半径r0 = 0.7-3.4 AU,一个小的磁性水平臂参数lambda <1.6),以及Quasi周期亮度增强。这些可能是由喷气弓冲击的影响,源轨道运动的影响,源轨道运动是由50 AU的25 MJ伴侣引起的,或在风发射区中积聚的磁盘密度扰动。如果MHD磁盘风消除了稳定的磁盘积聚所需的大部分角动量,则还可以解释大型的CO风量通量(上央恒星上的积聚速率的四倍)。我们的结果为迄今为止的最有力的证据提供了具有剩余进口的I类源中大量MHD磁盘风的存在,他们建议行星形成的初始阶段发生在高度动态的环境中。

The origin of outflows and their exact impact on disk evolution and planet formation remain crucial open questions. DG Tau B is a Class I protostar associated with a rotating conical CO outflow and a structured disk. Hence it is an ideal target to study these questions. We aim to characterize the morphology and kinematics of the DG Tau B outflow in order to elucidate its origin and potential impact on the disk. Our analysis is based on Atacama Large Millimeter Array (ALMA) 12CO(2-1) observations of DG Tau B at 20 au angular resolution. We characterize three different types of substructures in this outflow (arches, fingers, and cusps) with apparent acceleration. Wind-driven shell models with a Hubble law fail to explain these substructures. In contrast, both the morphology and kinematics of the conical flow can be explained by a steady conical magnetohydrodynamic (MHD) disk wind with foot-point radii r0= 0.7-3.4 au, a small magnetic level arm parameter lambda < 1.6), and quasi periodic brightness enhancements. These might be caused by the impact of jet bow shocks, source orbital motion caused by a 25 MJ companion at 50 au, or disk density perturbations accreting through the wind launching region. The large CO wind mass flux (four times the accretion rate onto the central star) can also be explained if the MHD disk wind removes most of the angular momentum required for steady disk accretion. Our results provide the strongest evidence so far for the presence of massive MHD disk winds in Class I sources with residual infall, and they suggest that the initial stages of planet formation take place in a highly dynamic environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源