论文标题
通过自适应重要性采样和控制变体对具有相同样本的多个期望的有效估计
Efficient estimation of multiple expectations with the same sample by adaptive importance sampling and control variates
论文作者
论文摘要
一些经典的不确定性量化问题需要估计多个期望。准确地估算所有这些都至关重要,并且可能对要执行的分析产生重大影响,而现有的标准现有蒙特卡洛方法可能会付出很高的代价。我们在这里提出了一个基于重要性抽样和控制变体的新程序,以通过相同的样本估算更有效的多重期望。我们首先表明存在一个结合重要性抽样和控制变体的最佳估计量的家族,但是在实践中不能使用它们,因为它们需要了解期望值的估计值。因此,由这些最佳估计器的形式和一些有趣的属性激励,因此我们提出了一种自适应算法。一般的想法是自适应更新接近最佳估计值的参数。然后,我们建议使用定量停止标准,该标准利用接近这些最佳参数和剩余预算足够的权衡。然后使用该左预算从最终抽样分布中绘制一个新的独立样本,从而获得了对期望的公正估计。我们通过估计SOBOL的索引并量化输入分布的影响来展示如何将程序应用于灵敏度分析。最后,现实的测试案例表明了所提出的算法的实际利益,及其在分别估算期望方面的显着改善。
Some classical uncertainty quantification problems require the estimation of multiple expectations. Estimating all of them accurately is crucial and can have a major impact on the analysis to perform, and standard existing Monte Carlo methods can be costly to do so. We propose here a new procedure based on importance sampling and control variates for estimating more efficiently multiple expectations with the same sample. We first show that there exists a family of optimal estimators combining both importance sampling and control variates, which however cannot be used in practice because they require the knowledge of the values of the expectations to estimate. Motivated by the form of these optimal estimators and some interesting properties, we therefore propose an adaptive algorithm. The general idea is to adaptively update the parameters of the estimators for approaching the optimal ones. We suggest then a quantitative stopping criterion that exploits the trade-off between approaching these optimal parameters and having a sufficient budget left. This left budget is then used to draw a new independent sample from the final sampling distribution, allowing to get unbiased estimators of the expectations. We show how to apply our procedure to sensitivity analysis, by estimating Sobol' indices and quantifying the impact of the input distributions. Finally, realistic test cases show the practical interest of the proposed algorithm, and its significant improvement over estimating the expectations separately.