论文标题
量子周期性超级巨头的最高权重模块$ p $
Highest Weight Modules Over The Quantum Periplectic Superalgebra of Type $P$
论文作者
论文摘要
在本文中,我们开始研究量化的封建Superalgebra $ {\ Mathfrak U} _Q {\ Mathfrak P} _n $的最高权重表示。我们引入了Drinfeld-Jimbo表示形式,并建立了$ {\ Mathfrak U} _Q {\ Mathfrak P} _n $的三角形分解。我们解释了如何将模块超过$ {\ Mathfrak u} _q {\ Mathfrak p} _n $与$ {\ Mathfrak p} _n $超过模块的模块,类型$ p $的superalgebra是$ p $ $ p $的类型,我们证明了Tensor tensor tensor tensor tensor tensor tensor tensor tensor tensor tensor po {p p $ p p $ _thraak ustraak us of p p p $} acq act cy p} act c cy p} ack。半圣事。
In this paper, we begin the study of highest weight representations of the quantized enveloping superalgebra ${\mathfrak U}_q {\mathfrak p}_n$ of type $P$. We introduce a Drinfeld-Jimbo representation and establish a triangular-decomposition of ${\mathfrak U}_q {\mathfrak p}_n$. We explain how to relate modules over ${\mathfrak U}_q {\mathfrak p}_n$ to modules over ${\mathfrak p}_n$, the Lie superalgebra of type $P$, and we prove that the category of tensor modules over ${\mathfrak U}_q {\mathfrak p}_n$ is not semisimple.