论文标题
conda:自动驾驶汽车的视觉感知中不断的无监督域的适应性学习
CONDA: Continual Unsupervised Domain Adaptation Learning in Visual Perception for Self-Driving Cars
论文作者
论文摘要
尽管无监督的域适应方法在自动驾驶汽车的视觉感知中的语义场景细分中取得了显着的性能,但在现实世界中,这些方法仍然不切实际。实际上,细分模型可能会遇到尚未看到的新数据。此外,由于隐私问题,先前的分割模型数据培训可能无法访问。因此,为了解决这些问题,在这项工作中,我们提出了一种持续的无监督域适应性(CONDA)方法,该方法使模型能够不断学习并适应新数据的存在。此外,我们提出的方法的设计无需访问以前的培训数据。为了避免灾难性的遗忘问题并保持分割模型的性能,我们提出了一种新型的BEXTIVE最大似然损失,以施加预测的分割分布变化的约束。持续无监督的域适应性基准的实验结果表明了所提出的CONDA方法的高级性能。
Although unsupervised domain adaptation methods have achieved remarkable performance in semantic scene segmentation in visual perception for self-driving cars, these approaches remain impractical in real-world use cases. In practice, the segmentation models may encounter new data that have not been seen yet. Also, the previous data training of segmentation models may be inaccessible due to privacy problems. Therefore, to address these problems, in this work, we propose a Continual Unsupervised Domain Adaptation (CONDA) approach that allows the model to continuously learn and adapt with respect to the presence of the new data. Moreover, our proposed approach is designed without the requirement of accessing previous training data. To avoid the catastrophic forgetting problem and maintain the performance of the segmentation models, we present a novel Bijective Maximum Likelihood loss to impose the constraint of predicted segmentation distribution shifts. The experimental results on the benchmark of continual unsupervised domain adaptation have shown the advanced performance of the proposed CONDA method.