论文标题

你有什么模因?生成模因中视觉语义角色标签的解释

What do you MEME? Generating Explanations for Visual Semantic Role Labelling in Memes

论文作者

Sharma, Shivam, Agarwal, Siddhant, Suresh, Tharun, Nakov, Preslav, Akhtar, Md. Shad, Chakraborty, Tanmoy

论文摘要

模因是在社交媒体上有效沟通的强大手段。他们轻松的对病毒视觉效果和引人入胜的信息的合并会对适当的营销产生深远的影响。对模因的先前研究主要集中于表征其情感范围,并检测模因的信息是否暗示了任何预期的伤害,例如仇恨,犯罪,种族主义等。但是,模因通常会使用抽象,这可能难以捉摸。在这里,我们介绍了一项新颖的任务 - 惊呼,为模因中的视觉语义角色标签产生解释。为此,我们策划Exhvv,这是一个新颖的数据集,为三种类型的实体提供了自然语言解释 - 英雄,小人和受害者,涵盖了3K模因中存在的4,680个实体。我们还使用几个强大的单峰和多模式基线进行基准ENEVVV。此外,我们认为Lumen是一种新型的多式模式,多任务学习框架,通过共同学习预测正确的语义角色并相应地生成合适的自然语言解释来努力解决最佳解决。管腔明显胜过18个标准自然语言生成评估指标的最佳基线。我们的系统评估和分析表明,裁决语义角色所需的特征多模式线索也有助于产生合适的解释。

Memes are powerful means for effective communication on social media. Their effortless amalgamation of viral visuals and compelling messages can have far-reaching implications with proper marketing. Previous research on memes has primarily focused on characterizing their affective spectrum and detecting whether the meme's message insinuates any intended harm, such as hate, offense, racism, etc. However, memes often use abstraction, which can be elusive. Here, we introduce a novel task - EXCLAIM, generating explanations for visual semantic role labeling in memes. To this end, we curate ExHVV, a novel dataset that offers natural language explanations of connotative roles for three types of entities - heroes, villains, and victims, encompassing 4,680 entities present in 3K memes. We also benchmark ExHVV with several strong unimodal and multimodal baselines. Moreover, we posit LUMEN, a novel multimodal, multi-task learning framework that endeavors to address EXCLAIM optimally by jointly learning to predict the correct semantic roles and correspondingly to generate suitable natural language explanations. LUMEN distinctly outperforms the best baseline across 18 standard natural language generation evaluation metrics. Our systematic evaluation and analyses demonstrate that characteristic multimodal cues required for adjudicating semantic roles are also helpful for generating suitable explanations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源