论文标题
何时神经网络无法概括?模型敏感性的观点
When Neural Networks Fail to Generalize? A Model Sensitivity Perspective
论文作者
论文摘要
域的概括(DG)旨在训练模型,在不同分布下在看不见的域中表现良好。本文考虑了一个更现实,更具挑战性的场景,即单个域的概括(单DG),其中只有一个源域可用于培训。为了应对这一挑战,我们首先尝试了解神经网络何时无法概括?我们从经验上确定了模型的特性,该特性与我们将其作为“模型灵敏度”的概括密切相关。根据我们的分析,我们提出了一种新型的光谱对抗数据增强(SADA)策略,以生成针对高度敏感频率的增强图像。用这些难以学习的样品训练的模型可以有效地抑制频率空间中的灵敏度,从而改善概括性能。在多个公共数据集上进行的广泛实验证明了我们方法的优越性,该方法超过了最新的单DG方法。
Domain generalization (DG) aims to train a model to perform well in unseen domains under different distributions. This paper considers a more realistic yet more challenging scenario,namely Single Domain Generalization (Single-DG), where only a single source domain is available for training. To tackle this challenge, we first try to understand when neural networks fail to generalize? We empirically ascertain a property of a model that correlates strongly with its generalization that we coin as "model sensitivity". Based on our analysis, we propose a novel strategy of Spectral Adversarial Data Augmentation (SADA) to generate augmented images targeted at the highly sensitive frequencies. Models trained with these hard-to-learn samples can effectively suppress the sensitivity in the frequency space, which leads to improved generalization performance. Extensive experiments on multiple public datasets demonstrate the superiority of our approach, which surpasses the state-of-the-art single-DG methods.