论文标题
共生X射线二进制文件的有前途的地层通道:IGR J17329-2731和4U 1700+24的病例
A promising formation channel for symbiotic X-ray binaries: cases of IGR J17329-2731 and 4U 1700+24
论文作者
论文摘要
最近的观察结果表明,共生X射线二进制(SYXB)IGR J17329-2731包含一个高度磁性的中子星(NS),该恒星(NS)通过其巨型恒星伴侣从风中吸收物质,并暗示1700+24也可能具有高度磁性的NS。积聚引起的氧气 - neon-magnesium白矮人(Onemg WD) +红色巨型(RG)恒星二进制文件是形成这些syxbs的一个有前途的通道,而其他长期的地层通道则难以生产这些sixbs。通过考虑非磁性和磁性ONEMG WDS,我研究了ONEMG WD + RG二进制文件的演变,该二进制是使用Mesa Stellar Evolution Code,用于生产具有非磁性或磁化NSS的SYXB。在与磁性限制的前进化中,与非磁性病例相比,在低质量转移率下,积聚WD的质量积累效率增加。通过高度磁化的WD形成的新生儿NSS可以通过保存磁通量继承大型磁场,并且该系统可能与红色巨型同伴的年龄兼容。这些年轻且高度磁化的NS可以从巨型伴侣的恒星风到那些观察到的syxbs的光芒,并可以在此期间保留其高磁场。 MESA计算结果表明,与无磁性约束案例相比,AIC的初始参数(初始RG质量和轨道周期)具有具有磁性限制的AIC,并具有高度磁化的NSS偏移形成syxb,较低且较窄。
Recent observations demonstrate that the symbiotic X-ray binary (SyXB) IGR J17329-2731 contains a highly magnetized neutron star (NS) which accretes matter through the wind from its giant star companion, and suggest that 4U 1700+24 may also have a highly magnetized NS. Accretion-induced collapse (AIC) from oxygen-neon-magnesium white dwarf (ONeMg WD) + red giant (RG) star binaries is one promising channel to form these SyXBs, while other long standing formation channels have difficulties to produce these SyXBs. By considering non-magnetic and magnetic ONeMg WDs, I investigate the evolution of ONeMg WD + RG binaries with the MESA stellar evolution code for producing SyXBs with non-magnetic or magnetized NSs. In the pre-AIC evolution with magnetic confinement, the mass accumulation efficiency of the accreting WD is increased at low mass transfer rate compared to the non-magnetic case. The newborn NSs formed via AIC of highly magnetized WDs could inherit the large magnetic field through conservation of magnetic flux, and the systems could have a long age compatible with that of the red giant companions. These young and highly magnetized NSs could accrete matters from the stellar wind of the giant companions to that shine as those observed SyXBs, and could preserve their high magnetic field during this time. The MESA calculation results show that the initial parameter (initial RG mass and orbital period) space for the AIC with magnetic confinement to form SyXBs with highly magnetized NSs shifts to be lower and narrower compared to that of the no magnetic confinement case.